direct product, metabelian, supersoluble, monomial, A-group
Aliases: C23×C13⋊C3, C26⋊2(C2×C6), (C2×C26)⋊8C6, (C22×C26)⋊2C3, C13⋊2(C22×C6), SmallGroup(312,55)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C13⋊C3 — C2×C13⋊C3 — C22×C13⋊C3 — C23×C13⋊C3 |
C13 — C23×C13⋊C3 |
Generators and relations for C23×C13⋊C3
G = < a,b,c,d,e | a2=b2=c2=d13=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d9 >
Subgroups: 256 in 64 conjugacy classes, 48 normal (6 characteristic)
C1, C2, C3, C22, C6, C23, C2×C6, C13, C22×C6, C26, C13⋊C3, C2×C26, C2×C13⋊C3, C22×C26, C22×C13⋊C3, C23×C13⋊C3
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C22×C6, C13⋊C3, C2×C13⋊C3, C22×C13⋊C3, C23×C13⋊C3
(1 92)(2 93)(3 94)(4 95)(5 96)(6 97)(7 98)(8 99)(9 100)(10 101)(11 102)(12 103)(13 104)(14 79)(15 80)(16 81)(17 82)(18 83)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 73)(35 74)(36 75)(37 76)(38 77)(39 78)(40 53)(41 54)(42 55)(43 56)(44 57)(45 58)(46 59)(47 60)(48 61)(49 62)(50 63)(51 64)(52 65)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 78)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)(67 69 75)(68 72 71)(70 78 76)(73 74 77)(80 82 88)(81 85 84)(83 91 89)(86 87 90)(93 95 101)(94 98 97)(96 104 102)(99 100 103)
G:=sub<Sym(104)| (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,99)(9,100)(10,101)(11,102)(12,103)(13,104)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,53)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90)(93,95,101)(94,98,97)(96,104,102)(99,100,103)>;
G:=Group( (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,99)(9,100)(10,101)(11,102)(12,103)(13,104)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,53)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90)(93,95,101)(94,98,97)(96,104,102)(99,100,103) );
G=PermutationGroup([[(1,92),(2,93),(3,94),(4,95),(5,96),(6,97),(7,98),(8,99),(9,100),(10,101),(11,102),(12,103),(13,104),(14,79),(15,80),(16,81),(17,82),(18,83),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,73),(35,74),(36,75),(37,76),(38,77),(39,78),(40,53),(41,54),(42,55),(43,56),(44,57),(45,58),(46,59),(47,60),(48,61),(49,62),(50,63),(51,64),(52,65)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,78),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64),(67,69,75),(68,72,71),(70,78,76),(73,74,77),(80,82,88),(81,85,84),(83,91,89),(86,87,90),(93,95,101),(94,98,97),(96,104,102),(99,100,103)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 6A | ··· | 6N | 13A | 13B | 13C | 13D | 26A | ··· | 26AB |
order | 1 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 13 | 13 | 13 | 13 | 26 | ··· | 26 |
size | 1 | 1 | ··· | 1 | 13 | 13 | 13 | ··· | 13 | 3 | 3 | 3 | 3 | 3 | ··· | 3 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||
image | C1 | C2 | C3 | C6 | C13⋊C3 | C2×C13⋊C3 |
kernel | C23×C13⋊C3 | C22×C13⋊C3 | C22×C26 | C2×C26 | C23 | C22 |
# reps | 1 | 7 | 2 | 14 | 4 | 28 |
Matrix representation of C23×C13⋊C3 ►in GL5(𝔽79)
78 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 78 | 0 | 0 |
0 | 0 | 0 | 78 | 0 |
0 | 0 | 0 | 0 | 78 |
78 | 0 | 0 | 0 | 0 |
0 | 78 | 0 | 0 | 0 |
0 | 0 | 78 | 0 | 0 |
0 | 0 | 0 | 78 | 0 |
0 | 0 | 0 | 0 | 78 |
1 | 0 | 0 | 0 | 0 |
0 | 78 | 0 | 0 | 0 |
0 | 0 | 78 | 0 | 0 |
0 | 0 | 0 | 78 | 0 |
0 | 0 | 0 | 0 | 78 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 78 | 78 | 25 |
0 | 0 | 1 | 0 | 64 |
0 | 0 | 0 | 1 | 70 |
55 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 |
0 | 0 | 0 | 66 | 76 |
0 | 0 | 0 | 39 | 15 |
0 | 0 | 1 | 41 | 40 |
G:=sub<GL(5,GF(79))| [78,0,0,0,0,0,1,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78],[78,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78],[1,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78,0,0,0,0,0,78],[1,0,0,0,0,0,1,0,0,0,0,0,78,1,0,0,0,78,0,1,0,0,25,64,70],[55,0,0,0,0,0,23,0,0,0,0,0,0,0,1,0,0,66,39,41,0,0,76,15,40] >;
C23×C13⋊C3 in GAP, Magma, Sage, TeX
C_2^3\times C_{13}\rtimes C_3
% in TeX
G:=Group("C2^3xC13:C3");
// GroupNames label
G:=SmallGroup(312,55);
// by ID
G=gap.SmallGroup(312,55);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-13,244]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^13=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^9>;
// generators/relations